Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122980, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: covidwho-20231155

RESUMEN

Corona Virus Disease 2019 (COVID-19) as the infectious disease caused the pandemic disease around the world through infection by SARS-CoV-2 virus. The common diagnosis approach is Quantitative RT-PCR (qRT-PCR) which is time consuming and labor intensive. In the present study a novel colorimetric aptasensor was developed based on intrinsic catalytic activity of chitosan film embedded with ZnO/CNT (ChF/ZnO/CNT) on 3,3',5,5'-tetramethylbenzidine (TMB) substrate. The main nanocomposite platform was constructed and functionalized with specific COVID-19 aptamer. The construction subjected with TMB substrate and H2O2 in the presence of different concentration of COVID-19 virus. Separation of aptamer after binding with virus particles declined the nanozyme activity. Upon addition of virus concentration, the peroxidase like activity of developed platform and colorimetric signals of oxidized TMB decreased gradually. Under optimal conditions the nanozyme could detect the virus in the linear range of 1-500 pg mL and LOD of 0.05 pg mL. Also, a paper-based platform was used for set up the strategy on applicable device. The paper-based strategy showed a linear range between 50 and 500 pg mL with LOD of 8 pg mL. The applied paper based colorimetric strategy showed reliable results for sensitive and selective detection of COVID-19 virus with the cost-effective approach.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Óxido de Zinc , Humanos , Peroxidasa/metabolismo , Oxidación-Reducción , Colorimetría/métodos , Peróxido de Hidrógeno/análisis , Biomimética , COVID-19/diagnóstico , SARS-CoV-2 , Aptámeros de Nucleótidos/metabolismo
2.
Chem Biol Interact ; 374: 110380, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2272148

RESUMEN

The SARS-CoV-2 pandemic still poses a threat to the global health as the virus continues spreading in most countries. Therefore, the identification of molecules capable of inhibiting the binding between the ACE2 receptor and the SARS-CoV-2 spike protein is of paramount importance. Recently, two DNA aptamers were designed with the aim to inhibit the interaction between the ACE2 receptor and the spike protein of SARS-CoV-2. Indeed, the two molecules interact with the ACE2 receptor in the region around the K353 residue, preventing its binding of the spike protein. If on the one hand this inhibition process hinders the entry of the virus into the host cell, it could lead to a series of side effects, both in physiological and pathological conditions, preventing the correct functioning of the ACE2 receptor. Here, we discuss through a computational study the possible effect of these two very promising DNA aptamers, investigating all possible interactions between ACE2 and its experimentally known molecular partners. Our in silico predictions show that some of the 10 known molecular partners of ACE2 could interact, physiologically or pathologically, in a region adjacent to the K353 residue. Thus, the curative action of the proposed DNA aptamers could recruit ACE2 from its biological functions.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/metabolismo , Unión Proteica , Peptidil-Dipeptidasa A/química
3.
J Vis Exp ; (187)2022 09 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2217149

RESUMEN

Virus infections have a major impact on society; most methods of detection have difficulties in determining whether a detected virus is infectious, causing delays in treatment and further spread of the virus. Developing new sensors that can inform on the infectability of clinical or environmental samples will meet this unmet challenge. However, very few methods can obtain sensing molecules that can recognize an intact infectious virus and differentiate it from the same virus that has been rendered non-infectious by disinfection methods. Here, we describe a protocol to select aptamers that can distinguish infectious viruses vs non-infectious viruses using systematic evolution of ligands by exponential enrichment (SELEX). We take advantage of two features of SELEX. First, SELEX can be tailor-made to remove competing targets, such as non-infectious viruses or other similar viruses, using counter selection. Additionally, the whole virus can be used as the target for SELEX, instead of, for example, a viral surface protein. Whole virus SELEX allows for the selection of aptamers that bind specifically to the native state of the virus, without the need to disrupt of the virus. This method thus allows recognition agents to be obtained based on functional differences in the surface of pathogens, which do not need to be known in advance.


Asunto(s)
Aptámeros de Nucleótidos , Virosis , Virus , Aptámeros de Nucleótidos/metabolismo , Humanos , Ligandos , Proteínas de la Membrana , Técnica SELEX de Producción de Aptámeros/métodos , Virus/metabolismo
4.
Cell Chem Biol ; 29(2): 215-225.e5, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1664751

RESUMEN

Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.


Asunto(s)
Anticoagulantes/farmacología , Aptámeros de Nucleótidos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Factor V/antagonistas & inhibidores , Factor Va/antagonistas & inhibidores , Secuencia de Aminoácidos , Anticoagulantes/química , Anticoagulantes/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Emparejamiento Base , Sitios de Unión , COVID-19/sangre , Membrana Celular/química , Membrana Celular/metabolismo , Factor V/química , Factor V/genética , Factor V/metabolismo , Factor Va/química , Factor Va/genética , Factor Va/metabolismo , Heparina de Bajo-Peso-Molecular/química , Heparina de Bajo-Peso-Molecular/metabolismo , Humanos , Sueros Inmunes/química , Sueros Inmunes/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Protaminas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Técnica SELEX de Producción de Aptámeros , Especificidad por Sustrato , Tratamiento Farmacológico de COVID-19
5.
Chemistry ; 28(15): e202200078, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1653193

RESUMEN

We report on a unique DNA aptamer, denoted MSA52, that displays universally high affinity for the spike proteins of wildtype SARS-CoV-2 as well as the Alpha, Beta, Gamma, Epsilon, Kappa, Delta and Omicron variants. Using an aptamer pool produced from round 13 of selection against the S1 domain of the wildtype spike protein, we carried out one-round SELEX experiments using five different trimeric spike proteins from variants, followed by high-throughput sequencing and sequence alignment analysis of aptamers that formed complexes with all proteins. A previously unidentified aptamer, MSA52, showed Kd values ranging from 2 to 10 nM for all variant spike proteins, and also bound similarly to variants not present in the reselection experiments. This aptamer also recognized pseudotyped lentiviruses (PL) expressing eight different spike proteins of SARS-CoV-2 with Kd values between 20 and 50 pM, and was integrated into a simple colorimetric assay for detection of multiple PL variants. This discovery provides evidence that aptamers can be generated with high affinity to multiple variants of a single protein, including emerging variants, making it well-suited for molecular recognition of rapidly evolving targets such as those found in SARS-CoV-2.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , COVID-19/virología , Humanos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1613826

RESUMEN

Nucleic acid aptamers specific to S-protein and its receptor binding domain (RBD) of SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus 2) virions are of high interest as potential inhibitors of viral infection and recognizing elements in biosensors. Development of specific therapy and biosensors is complicated by an emergence of new viral strains bearing amino acid substitutions and probable differences in glycosylation sites. Here, we studied affinity of a set of aptamers to two Wuhan-type RBD of S-protein expressed in Chinese hamster ovary cell line and Pichia pastoris that differ in glycosylation patterns. The expression system for the RBD protein has significant effects, both on values of dissociation constants and relative efficacy of the aptamer binding. We propose glycosylation of the RBD as the main force for observed differences. Moreover, affinity of a several aptamers was affected by a site of biotinylation. Thus, the robustness of modified aptamers toward new virus variants should be carefully tested.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Ácidos Nucleicos Inmovilizados/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Sitios de Unión , Células CHO , Cricetulus , Glicosilación , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , SARS-CoV-2 , Saccharomycetales/genética
7.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1559358

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created an urgent need for new technologies to treat COVID-19. Here we report a 2'-fluoro protected RNA aptamer that binds with high affinity to the receptor binding domain (RBD) of SARS-CoV-2 spike protein, thereby preventing its interaction with the host receptor ACE2. A trimerized version of the RNA aptamer matching the three RBDs in each spike complex enhances binding affinity down to the low picomolar range. Binding mode and specificity for the aptamer-spike interaction is supported by biolayer interferometry, single-molecule fluorescence microscopy, and flow-induced dispersion analysis in vitro. Cell culture experiments using virus-like particles and live SARS-CoV-2 show that the aptamer and, to a larger extent, the trimeric aptamer can efficiently block viral infection at low concentration. Finally, the aptamer maintains its high binding affinity to spike from other circulating SARS-CoV-2 strains, suggesting that it could find widespread use for the detection and treatment of SARS-CoV-2 and emerging variants.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Humanos , Mutación , Pruebas de Neutralización , Conformación de Ácido Nucleico , Unión Proteica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/fisiología , Técnica SELEX de Producción de Aptámeros , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
8.
Pharmacol Res ; 175: 105982, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1527828

RESUMEN

All the different coronavirus SARS-CoV-2 variants isolated so far share the same mechanism of infection mediated by the interaction of their spike (S) glycoprotein with specific residues on their cellular receptor: the angiotensin converting enzyme 2 (ACE2). Therefore, the steric hindrance on this cellular receptor created by a bulk macromolecule may represent an effective strategy for the prevention of the viral spreading and the onset of severe forms of Corona Virus disease 19 (COVID-19). Here, we applied a systematic evolution of ligands by exponential enrichment (SELEX) procedure to identify two single strand DNA molecules (aptamers) binding specifically to the region surrounding the K353, the key residue in human ACE2 interacting with the N501 amino acid of the SARS-CoV-2 S. 3D docking in silico experiments and biochemical assays demonstrated that these aptamers bind to this region, efficiently prevent the SARS-CoV-2 S/human ACE2 interaction and the viral infection in the nanomolar range, regardless of the viral variant, thus suggesting the possible clinical development of these aptamers as SARS-CoV-2 infection inhibitors. Our approach brings a significant innovation to the therapeutic paradigm of the SARS-CoV-2 pandemic by protecting the target cell instead of focusing on the virus; this is particularly attractive in light of the increasing number of viral mutants that may potentially escape the currently developed immune-mediated neutralization strategies.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Aptámeros de Nucleótidos/farmacología , Tratamiento Farmacológico de COVID-19 , Receptores Virales/antagonistas & inhibidores , SARS-CoV-2/patogenicidad , Internalización del Virus/efectos de los fármacos , Células A549 , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , COVID-19/enzimología , COVID-19/genética , COVID-19/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Mutación , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/genética , Técnica SELEX de Producción de Aptámeros
9.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1288896

RESUMEN

Herein, we have generated ssRNA aptamers to inhibit SARS-CoV-2 Mpro, a protease necessary for the SARS-CoV-2 coronavirus replication. Because there is no aptamer 3D structure currently available in the databanks for this protein, first, we modeled an ssRNA aptamer using an entropic fragment-based strategy. We refined the initial sequence and 3D structure by using two sequential approaches, consisting of an elitist genetic algorithm and an RNA inverse process. We identified three specific aptamers against SARS-CoV-2 Mpro, called MAptapro, MAptapro-IR1, and MAptapro-IR2, with similar 3D conformations and that fall in the dimerization region of the SARS-CoV-2 Mpro necessary for the enzymatic activity. Through the molecular dynamic simulation and binding free energy calculation, the interaction between the MAptapro-IR1 aptamer and the SARS-CoV-2 Mpro enzyme resulted in the strongest and the highest stable complex; therefore, the ssRNA MAptapro-IR1 aptamer was selected as the best potential candidate for the inhibition of SARS-CoV-2 Mpro and a perspective therapeutic drug for the COVID-19 disease.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/metabolismo , Proteínas de la Matriz Viral/metabolismo , Aptámeros de Nucleótidos/química , Sitios de Unión , COVID-19/patología , COVID-19/virología , ADN de Cadena Simple/química , Diseño de Fármacos , Entropía , Humanos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/aislamiento & purificación , Proteínas de la Matriz Viral/química
10.
J Phys Chem Lett ; 12(8): 2166-2171, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1101616

RESUMEN

The ongoing outbreak of the coronavirus infection has killed more than 2 million people. Herein, we demonstrate that Rhodamine 6G (Rh-6G) dye conjugated DNA aptamer-attached gold nanostar (GNS)-based distance-dependent nanoparticle surface energy transfer (NSET) spectroscopy has the capability of rapid diagnosis of specific SARS-CoV-2 spike recombinant antigen or SARS-CoV-2 spike protein pseudotyped baculovirus within 10 min. Because Rh-6G-attached single-stand DNA aptamer wrapped the GNS, 99% dye fluorescence was quenched because of the NSET process. In the presence of spike antigen or virus, the fluorescence signal persists because of the aptamer-spike protein binding. Specifically, the limit of detection for the NSET assay has been determined to be 130 fg/mL for antigen and 8 particles/mL for virus. Finally, we have demonstrated that DNA aptamer-attached GNSs can stop virus infection by blocking the angiotensin-converting enzyme 2 (ACE2) receptor binding capability and destroying the lipid membrane of the virus.


Asunto(s)
Antígenos Virales/análisis , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Oro/química , Nanopartículas del Metal/química , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/análisis , Enzima Convertidora de Angiotensina 2/metabolismo , Antígenos Virales/metabolismo , Aptámeros de Nucleótidos/metabolismo , Prueba de COVID-19/métodos , Transferencia de Energía , Humanos , Límite de Detección , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo
11.
Anal Chem ; 93(2): 992-1000, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: covidwho-967361

RESUMEN

The detection of trace protein biomarkers is essential in the diagnostic field. Protein detection systems ranging from widely used enzyme-linked immunosorbent assays to simple, inexpensive approaches, such as lateral flow immunoassays, play critical roles in medical and drug research. Despite continuous progress, current systems are insufficient for the diagnosis of diseases that require high sensitivity. In this study, we developed a heterogeneous sandwich-type sensing platform based on recombinase polymerase amplification using DNA aptamers specific to the target biomarker. Only the DNA bound to the target in the form of a heterogeneous sandwich was selectively amplified, and the fluorescence signal of an intercalating dye added before the amplification reaction was detected, thereby enabling high specificity and sensitivity. We applied this method for the detection of protein biomarkers for various infectious diseases including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and observed attomolar-level detection of biomarkers and low cross-reactivity between different viruses. We also confirmed detection efficiency of the proposed method using clinical samples. These results demonstrate that the proposed sensing platform can be used to diagnose various diseases requiring high sensitivity, specificity, and accuracy.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Biomarcadores/metabolismo , Técnicas de Amplificación de Ácido Nucleico/métodos , Recombinasas/metabolismo , Anticuerpos Inmovilizados/inmunología , Antígenos Virales/química , Antígenos Virales/inmunología , COVID-19/diagnóstico , COVID-19/virología , Enfermedades Transmisibles/diagnóstico , Colorantes Fluorescentes/química , Humanos , Virus de la Influenza A/metabolismo , Virus de la Influenza B/metabolismo , Gripe Humana/diagnóstico , Sistemas de Atención de Punto , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Técnica SELEX de Producción de Aptámeros
12.
Chem Commun (Camb) ; 56(70): 10235-10238, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: covidwho-697015

RESUMEN

Here, we report for the first time DNA aptamers targeted toward the COVID-19 nucleocapsid protein (Np). Np is one of the most abundant structural proteins and it serves as a diagnostic marker for the accurate and sensitive detection of COVID-19. After five rounds of selection, we obtained four DNA sequences with an affinity below 5 nM. The best one displayed a superb binding performance toward Np with a Kd value of 0.49 nM. Interestingly, we found that the four pairs of aptamers could bind to Np successively, suggesting a sandwich-type interaction. Using these sandwiched aptamers in ELISA and colloidal gold immunochromatographic strips, we were able to detect Np at the tens of pM level. The results demonstrate that aptamers are powerful molecular tools for virus detection, diagnosis, and antiviral therapy.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Betacoronavirus/metabolismo , Proteínas de la Nucleocápside/metabolismo , Aptámeros de Nucleótidos/química , Secuencia de Bases , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos , Oro/química , Humanos , Cinética , Límite de Detección , Nanopartículas del Metal/química , Proteínas de la Nucleocápside/química , Pandemias , Neumonía Viral/diagnóstico , SARS-CoV-2 , Técnica SELEX de Producción de Aptámeros
13.
Mol Cell Probes ; 53: 101636, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-621879

RESUMEN

The recently known coronavirus, SARS-CoV-2, has turn into the greatest global health challenge, affecting a large number of societies. The lack of specific treatment and gold-standard diagnostic system has made the situation more complicated. Efforts have led to production of several diagnostic kits that are associated with limitations such as inadequate sensitivity and accuracy. Aptamers as multipotent biological probes could be promising candidates to design sensitive and specific biosensors. Although few studies have introduced specific aptamer types of coronavirus, they may help us select the best approach to obtain specific aptamers for this virus. On the other hand, some of already-introduced aptamers have shown the inhibitory effects on coronavirus that could be applied as therapeutics. The present study has provided a systematic overview on use of aptamer-based biosensors and drugs to diagnose and treat coronavirus.


Asunto(s)
Antivirales/uso terapéutico , Aptámeros de Nucleótidos/uso terapéutico , Técnicas Biosensibles , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Antivirales/metabolismo , Aptámeros de Nucleótidos/metabolismo , COVID-19 , Humanos , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA